
PowerDNS & General Thoughts
on the (Ir)relevance of DNS

bert hubert
ahu@ds9a.nl

Netherlabs Computer Consulting BV

Outline of this presentation

What is PowerDNS
● What did we do differently

– Our attitude
– C++/Threads

● What do we suck at
● Performance
● The Recursive Recursor
● What did we learn from our experiences
● General thoughts on the (ir)relevance of DNS

What is PowerDNS

● Open Source (GPL version 2) Authoritative
Nameserver

● Open Source Recursive recursing Nameserver
● Full Master and Slave support
● Talks to ODBC, MySQL, PostgreSQL, LDAP,

TDB/GDB/DB2, IBM DB2, Oracle, Pipes and
BIND style zonefiles & configurations

● Available for Unix and Windows
● Full IPv6 support

What did we do differently

● Started out as a commercial company with a
closed source proprietary product

● Heavy use of the C++ Standard Template Library
● Some threading, some 'fibers' (MTasker)
● Zone files are just one data source
● No support for every OS (HP/UX, SCO :-))
● No desire to exactly follow some of the sillier

parts of the STD documents
● Whole packet caching

What do we suck at
● No real support for EDNS0

– we blindly truncate at 512 octets
– will happily accept larger answers though

● Support for large queries that need TCP in the
recursor is shaky to say the least

● We could go single threaded for many databases
● Solaris support lags behind

– we have no Sun
● Packet parser is primordial code

– PowerDNS was my first C++ program!
● We store IPv6 and IPv4 addresses as ASCII!

Our attitude
● We want stuff to Work Well, no DJB-isms.
● Don't send out ritualistic bogus data however
● Security over everything
● Be a friendly netizen

– don't flood remote nameservers with queries
– give answers that can be parsed well
– robustness principle, adhere to relevant specs

● We do not follow newfangled DNS developments
unless we see real use or demand among our users

● Trade utmost efficiency over straightforward code
– for example, we store IP addresses as ASCII

Intermezzo: C++ & Threads
Evangelism

● C++ has a bad rap
● Mostly an attitude issue – C++ generally not

associated with the lean & mean crowd
● typedef
map<string,set<ResourceRecord> >
cache_t;

● Concurrent programming makes for sequential
easy to read code

Performance
● We strive to offer the operator choice
● Keep threading to a minimum
● Availability of all features comes at a performance

cost
● Things that can be switched off:

– CNAMES
– Wildcards
– Out of zone and IPv6 additional processing
– Logging
– Strictly RFC compliant AXFRs (1 record/packet)

● Out of the box, performance is not the priority
● Ability to serve millions of zones (tested) is!

Specific performance features

● We don't check for a SOA unless we need to!
– We assume a competent operator :-)
– Query for DS9A.NL/MX results in 1 SQL query if it

exists. This breaks RFC1034 Algorithm.
● Whole packet caching

– An identical packet (except for the id) gets answered
within a microsecond, id is spoofed copied in

● Database query caching, negative query caching
● No authority records unless needed

The recursor (1/2)
● Cooperative multitasking using MTasker
● 1200 lines of code
● Impressive array of features:

– Verisign oddity removal
– Query throttling

● throttles lame results for nameserver/zone tuples
● throttles SERVFAIL responding nameservers/zone tuples
● throttles non-responding nameservers

– Fastest nameserver selection
● full RTT decay

● Completely separate from authoritive nameserver

The recursor (2/2)

● --trace output very useable to debug DNS
problems

● Memory cache, persistent cache (in CVS)
● Fully recursive recursing nameserver
● In an adnslogres reverse lookup test from a cold

cache, generally many times faster than BIND 8,
typically twice as fast as BIND 9

● Sadly, does not work on FreeBSD 4.<8,
OpenBSD (yet). Does work on Windows!

Lessons learned
● A database offers flexibility at the cost of memory

and CPU requirements.
● The lack of zone (re)loading often offsets this
● Many people, author included, like zone files
● Benchmarketeers will not tune for performance!

– they will also do their work on 48MB Pentium
laptops using heavy handed databases

● Logging is way more expensive than doing DNS
● C++ was a great choice

– none of the much feared performance & portability
problems happened

Lessons learned 2

● It takes multiple years for a user base to grow
– PowerDNS as a company is mostly defunct, but only

now is the program taking off (1500
downloads/week)

● It takes even longer before useful external
contributions start coming in (patches)

● Non-open source programs face a very tough sell
● Demand for DNSSEC is mostly an image thing

('yeah we do DNSSEC, we're secure')

THE BIGGEST LESSON
LEARNED!

1<<31 – 1
!=

(1<<31) -1

General thoughts on DNS
● DNS is but the ARP of IP

– 'layer 3 ARP'
● Except for IP addresses and MX, nothing

important is in there
● DNS is the prime example of a robust distributed

directory containing small data
● This is not due to the brokenness and limitations

DNSSEC and other DNS extensions struggle with
however

● The energy spent on DNS extensions could have
generated DNS2 three times over!

Stuff we would keep & change

● Make an authoritative no such zone type
● Make an authoritative no such record type
● Make an authoritative no such type in this record

type
● Add a signature field to all records
● Add ability to query multiple types at once
● Expand the ID space to 32 bits
● Replace label compression by generic

compression

Stuff we would change & keep
● Allow clients to negotiate a secure context with a

nameserver ('SSLDNS', hashcash)
– So a stub resover can be secure too

● Add a zone (de)provisioning protocol
● Keep UDP
● Mandatory MTU path discovery

– TCP is dog slow for small queries!
● Keep the binary format
● Keep serial numbers
● Add ability to delegate to IP addresses
● Add rsync-like zone modifications

Summarizing

● DNS could easily be usurped by IE, Exchange and
Outlook doing a preferential search over at
Microsoft for `enhanced information'.

● Protocol might stay the same but root-servers
might be different!

● DNS is not well suited for enhancements (small
packets, easily spoofed, very specific semantics)

● However, DNS remains the coolest protocol
around! (with the possible exception of TCP)

