
RIPE-47, Amsterdam, 29 January 2004

High bandwidth, Long
distance….

Where is my throughput?

Robin Tasker
CCLRC, Daresbury Laboratory, UK

[r.tasker@dl.ac.uk]

DataTAG is a project sponsored by the European Commission - EU Grant IST-2001-32459

RIPE-47, Amsterdam, 29 January 2004

Technical Directions
Objective

“to create a large scale intercontinental Grid testbed involving the
EDG project, several national projects in Europe, and related Grid
projects in the USA.”

To investigate

Advanced networking and
Grid interoperability issues

between these different Grid domains.

Achieved via Work Packages, including,

WP1: Establishment of a high performance intercontinental Grid testbed

WP2: High performance networking

WP3: Bulk data transfer validations and application performance
monitoring

WP4: Interoperability between Grid domains

RIPE-47, Amsterdam, 29 January 2004

WP2: High Performance Networking

Task 2.1: Transport applications for high bandwidth-delay
connections

Final report and demonstration of high performance data transport
protocols suitable for long distance Grid data replication requirements

Task 2.2: End-to-end inter-domain QoS

Final report and demonstration of intercontinental QoS services in
Grid environment

Task 2.3: Advanced reservation

Deployment of network services and advance reservation in
the intercontinental testbed

RIPE-47, Amsterdam, 29 January 2004

Throughput… What’s the problem?

One Terabyte of
data transferred in
less than an hour

On February 27-28 2003, the transatlantic DataTAG network was
extended, i.e. CERN - Chicago - Sunnyvale (>10000 km).

For the first time, a terabyte of data was transferred across the Atlantic
in less than one hour using a single TCP (Reno) stream.

The transfer was accomplished from Sunnyvale to Geneva at
a rate of 2.38 Gbits/s

RIPE-47, Amsterdam, 29 January 2004

Internet2 Land Speed Record

On October 1 2003, DataTAG set a new Internet2 Land Speed
Record by transferring 1.1 Terabytes of data in less than 30
minutes from Geneva to Chicago across the DataTAG provision,
corresponding to an average rate of 5.44 Gbits/s using a single
TCP (Reno) stream

RIPE-47, Amsterdam, 29 January 2004

So how did we do that?

Management of the End-to-End Connection

Memory-to-Memory transfer; no disk system involved

Processor speed and system bus characteristics

TCP Configuration – window size and frame size (MTU)

Network Interface Card and associated driver and their configuration

End-to-End “no loss” environment from CERN to Sunnyvale!

At least a 2.5 Gbits/s capacity pipe on the end-to-end path

A single TCP connection on the end-to-end path

No real user application

That’s to say - not the usual User experience!

RIPE-47, Amsterdam, 29 January 2004

Realistically – what’s the problem?
End System Issues

Network Interface Card and Driver and their configuration
TCP and its configuration
Operating System and its configuration
Disk System
Processor speed
Bus speed and capability

Network Infrastructure Issues

Obsolete network equipment;
Configured bandwidth restrictions;
Security restrictions (e.g., firewalls)
Sub-optimal routing
Transport Protocols

Network Capacity and the influence of Others!

Many, many TCP connections
Mice and Elephants on the path
Congestion

RIPE-47, Amsterdam, 29 January 2004

Buses, NICs and Drivers [1]
A Methodology to Characterise End-System Capability

For each combination of motherboard, NIC and Linux Kernel, three sets of
measurements were made using two PCs with the NICs directly connected,
namely,

Latency Round trip times were measured using Request-Response
UDP frames

UDP Throughput transmission of streams of UDP packets at regular, carefully
controlled intervals; throughput was measured at receiver.

Bus Activity measured on the PCI Bus

UDP/IP frames were chosen for the tests as they are processed in a similar
manner to TCP/IP frames, but are not subject to the flow control and
congestion avoidance algorithms defined in the TCP protocol, i.e. they do not
distort the base-level performance. Methodology uses a train of UDP frames of
differing MTU and differing frame spacing sent between end-systems.

RIPE-47, Amsterdam, 29 January 2004

Buses, NICs and Drivers [2]

This example shows the characterisation
of the Intel PRO/10GbE LR 10 Gigabit
Ethernet Server adaptor with the
Supermicro P4DP8-G2 motherboard in
a system with a Dual Xenon 2.2GHz 32
bit CPU and 400Mhz System PCI-X bus

Latency

Throughput

Bus Activity

RIPE-47, Amsterdam, 29 January 2004

Understanding NIC Drivers [1]

Linux driver basics – TX

• Application system call
• Encapsulation in UDP/TCP and IP

headers
• Enqueue on device send queue
• Driver places information in DMA

descriptor ring
• NIC reads data from main memory

via DMA and sends on wire
• NIC signals to processor that TX

descriptor sent

Linux driver basics – RX

• NIC receives packet onto card
• NIC places data in main memory via

DMA to a free RX descriptor
• NIC signals RX descriptor has data
• Driver passes frame to IP layer and

cleans RX descriptor
• IP layer passes data to application

Linux NAPI driver model

• On receiving a packet, NIC raises interrupt
• Driver switches off RX interrupts and schedules RX DMA ring poll
• Frames are pulled off DMA ring and is processed up to application
• When all frames are processed RX interrupts are re-enabled
• Dramatic reduction in RX interrupts under load
• Improving the performance of a Gigabit Ethernet driver under Linux

RIPE-47, Amsterdam, 29 January 2004

Understanding NIC Drivers [2]

NAPI receiver results

2.4Ghz machines connected through router with Linux 2.4.20
sender using TX interrupt moderation

Better throughput for NAPI receiver under load
Some strange behaviour with 100byte and 50byte packets

RIPE-47, Amsterdam, 29 January 2004

TCP, Linux and their configuration

DataTAG has produced a Technical Report on the Linux Kernel
2.4.20 which describes the structure and organization of the
networking code of the Linux kernel including the main data
structures, the sub-IP layer, the IP layer, and two transport
layers: TCP and UDP. See

http://datatag.web.cern.ch/datatag/papers/drafts/linux_kernel_map/

“In this technical report, we describe the structure and organization of
the networking code of Linux kernel 2.4.20. This release is the first of

the 2.4 branch to support network interrupt mitigation via a mechanism
known as NAPI. We describe the main data structures, the sub-IP layer,

the IP layer, and two transport layers: TCP and UDP. This material is
meant for people who are familiar with operating systems but are not

Linux kernel experts.”

http://datatag.web.cern.ch/datatag/papers/drafts/linux_kernel_map/

RIPE-47, Amsterdam, 29 January 2004

TCP (Reno) – Performance

AIMD and High Bandwidth – Long Distance networks

Poor performance of TCP in high bandwidth wide area networks is due
in part to the TCP congestion control algorithm

For each ack in a RTT without loss:
cwnd -> cwnd + a / cwnd - Additive Increase, a=1

For each window experiencing loss:

cwnd -> cwnd – b (cwnd) - Multiplicitive Decrease, b= ½

RIPE-47, Amsterdam, 29 January 2004

TCP (Reno) - Fairness

Throughput of two streams with different RTT sharing a 1Gbps bottleneck

0

100

200

300

400

500

600

700

800

900

1000

0 1000 2000 3000 4000 5000 6000 7000

Time (s)

Th
ro

ug
hp

ut
 (M

bp
s) RTT=181ms

Average over the life of the
connection RTT=181ms
RTT=117ms

Average over the life of the
connection RTT=117ms

TCP throughput for
two connections
with different RTT
sharing a 1 Gbits/s
bottleneck

Throughput of two streams with different MTU sizes sharing a 1 Gbps bottleneck

0
100
200
300
400
500
600
700
800
900

1000

0 1000 2000 3000 4000 5000 6000
Time(s)

Th
ro

ug
hp

ut
 (M

bp
s)

MTU = 3000 Byte

Average over the life of the
connection MTU = 3000 Byte
MTU = 9000 Byte

Average over the life of the
connection MTU = 9000 Byte

TCP throughput for
two connections
with different
MTU sharing a 1
Gbits/s bottleneck

RIPE-47, Amsterdam, 29 January 2004

Solution #1 High Speed TCP

Adjusting the AIMD Algorithm – TCP Reno

For each ack in a RTT without loss:
cwnd -> cwnd + a / cwnd - Additive Increase, where a = 1

For each window experiencing loss:
cwnd -> cwnd – b * (cwnd) - Multiplicitive Decrease, where b = ½

High Speed TCP modifies AIMD such that

a and b vary depending on current cwnd where

a increases more rapidly with larger cwnd and as a consequence returns to
the ‘optimal’ cwnd size sooner for the network path; and

b decreases less agressively and, as a consequence, so does the cwnd.
The effect is that there is not such a decrease in throughput.

RIPE-47, Amsterdam, 29 January 2004

Solution #1 High Speed TCP

Single High Speed TCP connection over a 2.5 Gbit/s link

0

1

2

3

4

5

0 500 1000 1500 2000 2500
time s

Ac
hi

ev
ab

le
 th

ro
ug

hp
ut

 G
bi

t/s

Single High Speed TCP connection over a 10 Gbits/s link

RIPE-47, Amsterdam, 29 January 2004

Solution #2 Scalable TCP

Adjusting the AIMD Algorithm – TCP Reno

For each ack in a RTT without loss:
cwnd -> cwnd + a / cwnd - Additive Increase, where a = 1

For each window experiencing loss:
cwnd -> cwnd – b * (cwnd) - Multiplicitive Decrease, where b = ½

Scalable TCP modifies AIMD such that

a and b are fixed adjustments for the increase and decrease of cwnd
such that the increase is greater than TCP Reno, and the decrease on
loss is less than TCP Reno

RIPE-47, Amsterdam, 29 January 2004

Solution #2 Scalable TCP

Number of 2 gigabytes transferred achieved in 1200s

0

0.5

1

1.5

2

2.5

3

0 500 1000 1500 2000 2500
time s

Ac
hi

ev
ab

le
 th

ro
ug

hp
ut

 G
bi

t/s

Single Scalable TCP connection over a 10 Gbits/s link

RIPE-47, Amsterdam, 29 January 2004

TCP – Comparing Proposals [1]
A single TCP flow over
the DataTAG testbed over
a one hour period. For the
first 20 minutes the
kernel was run with the
standard TCP stack, for
the second 20 minute
period the kernel was
switched to Scalable
TCP, and for the final 20
minutes the kernel ran
High Speed TCP. The
test was set such that
continuous loss was
induced in the network
at a rate of 1 packet
every 30,000 packets

Throughput against time

Measured congestion window against time

RIPE-47, Amsterdam, 29 January 2004

TCP – Comparing Proposals [2]

Comparison of throughput between a single Scalable TCP flow (left,
red) and a single High Speed TCP flow (right, red) and an increasing
number of standard TCP flows (green). This suggests that both
Scalable and High Speed TCP are broadly equivalent to eight standard
TCP flows

RIPE-47, Amsterdam, 29 January 2004

TCP – Comparing Proposals [3]

A notional measurement of TCP fairness for High Speed TCP (left)
and Scalable TCP (right) against standard TCP.

This show the differences between the AIMD approaches of High Speed
TCP (left) and Scalable TCP (right). Scalable TCP not only causes the
standard TCP flow to decrease its throughput more quickly, but is also
a lot more variable in its throughput for the duration of the connection.

RIPE-47, Amsterdam, 29 January 2004

User Applications!!

High Speed TCP transfer
using Iperf, i.e. null
application

Web100 records of High
Speed TCP during a http-
Get data transfer

Web100 records of High
Speed TCP during a
GridFTP data transfer

RIPE-47, Amsterdam, 29 January 2004

Questions?

http://www.datatag.org

DataTAG is a project sponsored by the European Commission - EU Grant IST-2001-32459

	High bandwidth, Long distance….Where is my throughput?
	Technical Directions
	WP2: High Performance Networking
	Throughput… What’s the problem?
	Internet2 Land Speed Record
	So how did we do that?
	Realistically – what’s the problem?
	Buses, NICs and Drivers [1]
	Buses, NICs and Drivers [2]
	Understanding NIC Drivers [1]
	Understanding NIC Drivers [2]
	TCP, Linux and their configuration
	TCP (Reno) – Performance
	TCP (Reno) - Fairness
	Solution #1 High Speed TCP
	Solution #1 High Speed TCP
	Solution #2 Scalable TCP
	Solution #2 Scalable TCP
	TCP – Comparing Proposals [1]
	TCP – Comparing Proposals [2]
	TCP – Comparing Proposals [3]
	User Applications!!
	Questions?http://www.datatag.org

