

Fast convergence project

Nicolas DUBOIS Benoît FONDEVIOLE Nicolas MICHEL FTR&D/DAC FTR&D/DAC FTR&D/DAC nicolas.dubois@francetelecom.com benoit.fondeviole@francetelecom.com nicolas.michel@francetelecom.com

France Telecom R&D

12/02/2004

What is the network context ?

How can we improve the scheduled maintenance ?

How can we improve the IS-IS convergence ?

Network context

Services

- Migration of a lot of new services on IP networks:
 - Voice over IP, video over IP
 - VPN with SLA (Service Level Agreement)
- □ New applications are :
 - Sensitive in term of performance
 - Critical for the business

🔶 Equipments

- □ Many of them with IP functions :
 - Switch (ATM, GE, etc.)
 - BAS et NAS (mobility) …
- A lot of different vendors within France Telecom networks
 - Routers : Cisco, Juniper, Redback, Cosine, etc.

Networks

- 4 major Ases (3215, 5511, 25186, Equant IGN)
- With various topologies and services

Network context : Hot issues

S

Problem with L2TP tunnels:

L2TP is used for INTERNET aggregation. The IP backbone is fully securized. But during link or node failure and scheduled work a lot of L2TP sessions are reset. We need less than 5s as L2TP timer is around 8s.

Problem with MPLS/VPN:

- □ Traffic from VPN customers is very sensitive in term of convergence because :
 - Video applications over INTRANET are growing fast
 - There are a lot of real time applications : cartography apps, financial apps, etc..
 - SNA interconnections with thousands of users
 - Deployment of "thin clients" (e.g. Citrix)
- Service Convergence should be under the second

Two improvement areas :

- Improve the <u>scheduled maintenance</u> process so that :
 - L2TP session get rerouted before the maintenance operations
 - MPLS-VPN stability is enhanced (no traffic loss, no BGP session reset)
- Improve the IS-IS <u>convergence</u> in the IP backbone (PE-P and P-P) so that :
 - Unexpected traffic disruption become as short as possible

Improve the scheduled work (1/2)

Taking into account the scheduled work is a priority. Most convergence cases are related to scheduled work.

Example 1: Study comparing IS-IS activities on maintenance hours compared to daytime. IS-IS changes are much more frequent during maintenance hours (study over

Example 2: Study analyzing all failure and maintenance tickets and the related root causes:

France Telecom R&D

1 month)

Improve the scheduled Maintenance (2/2)

- We can anticipate the rerouting for a scheduled maintenance. That is of course not possible in case of an unexpected failure event.
- Exemple of an improved engineering rule in case of a router reload (software upgrade).
 - □ Before the reload :
 - Step 1 : Set overload bit in the IS-IS configuration
 - Step 2 : Depending on the router, modify some metrics (next-hop or loopback, etc.)
 - Step 3 : Wait and verify that expected rerouting of the traffic as occured.
 - Step 4 : Reload the router
 - □ After the reload :
 - Step 5 : Don't forget to normalize the router,
 - Step 6 : Verify that nominal routing is again working
 - □ Not always efficient, can become very complex.

We need a safe, simple, efficient solution to allow scheduled work without loss of packets in order to reduce operational costs and disruptions

- □ Maybe dedicated reload feature combined with Graceful restart and Non Stop Forwarding ?
- Maybe other protocol changes in ISIS and BGP ?

Improve the convergence time

- 1. Detection Time
- 2. IS-IS Flooding and SPF triggering
- 3. SPF Computation and RIB update
- 4. FIB computation and distribution to the Line cards

Method to improve the convergence time:

- 1. Understand the IS-IS activity
- 2. Enhance IS-IS protocol behavior
- 3. Improve our test tools
- 4. Verify and measure on the real network the improvement

Principle for monitoring IS-IS

Principle: Snoop an IS-IS session between two IS-IS Routers

- □ The probe receives and stores all LSP flooded in the network
- The database server stores and analyses the LSP
- □ The web server displays statistics

Understand the network behavior

Audit network behavior to prove IS-IS optimization feasability with

□ Number of SPF and PRC computations per day :

□ General evolution of IS-IS activity (here over one month) :

Today possible IS-IS Optimization

Optimizing IS-IS reactions to failures

- Detection
 - No possible changes in IS-IS hello : too dangerous
 - POS timer optimization (depending of layer 2 protection timer)

□ LSP generation /flooding

Small backoff LSP gen interval (avoids spacing too much LSPs)

□ SPF and PRC triggering and computation

Small back off spf interval

	IS-IS before	IS-IS optimized
Failure detection	2000 ms	<= 5 ms
Delay before flooding LSP	33 ms	<= 5 ms
Delay before SPF computation	5500 ms	1 ms to max time (avg 20ms)
SPF computation time & RIB	40 to 250 ms	40 to 250 ms
update		

Tools to mesure convergence delay test

Lab tests with real hardware are also necessary and complementary to control plane auditing and monitoring.

- □ In order to evaluate equipment performance
- □ In order to check that new equipments can effectively forward and reroute the traffic

Example of measurements

- □ Line card FIB feeding speed can only be measured in the lab.
- □ LSP generation mechanisms evolution depending upon version
- □ SPF triggering and computation speed
- □ SPF vs. Incremental SPF in realistic network conditions

IS-IS convergence : FIB update

In some network situations for some equipments, the principal problem is the FIB update :

This time depends on the failure (ASBR, link in the backbone) and the number of prefixes that should be modified inside each line card.

Updating a lot of prefixes

But in other failure case like :

What is the hardware, software solution ? (maybe just a best network design ? ;-)

Solution for the FIB Update issue

S.

Some possible solutions

- □ Hardware improvement: Two stages lookup at the edge or in the core;
- Engineering changes :
 - Reduce the number of IS-IS and BGP prefixes (for example : Partial Routing with default route)
 - Limit the number of next-hop changes.

Partial routing performance (Case of the collect network)

□ It is not a perfect solution, but it provides a good improvement to the convergence in the core

□ It can stabilize the network by reducing the amount of BGP updates

Summary

For Internet services

- □ IS-IS optimizations are sufficient to fulfill the service requirements with routers that have two stages look-up. **FT will deploy IS-IS fast convergence**.
- □ BFD will be a good solution to improve the detection time on GigaEthernet

For MPLS-VPN services

Some additionnal tests are needed to detail failure cases and discuss the benefits of subsecond IS-IS convergence. There is a strong interaction with LDP.

🔶 Outlook

- □ Interoperability : Test the end-to-end results with different routers (CISCO JUNIPER)
- □ Need to consider Fast Reroute to decrease the convergence time for new services ?
- □ A problem for updating a lot of prefixes in the FIB remains (in some special failure)
- □ Improve the Inter-AS convergence time