

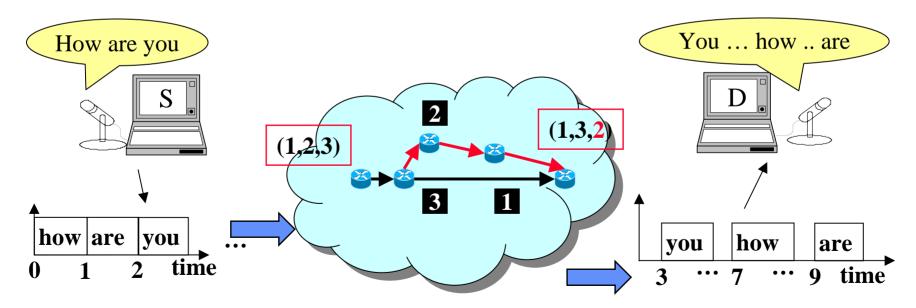
Reordering of IP Packets in Internet

Xiaoming Zhou and Piet Van Mieghem

Network Architectures and Services TU Delft January 29, 2004

Faculty of Electrical Engineering, mathematics and computer science

Xiaoming Zhou 1


Overview

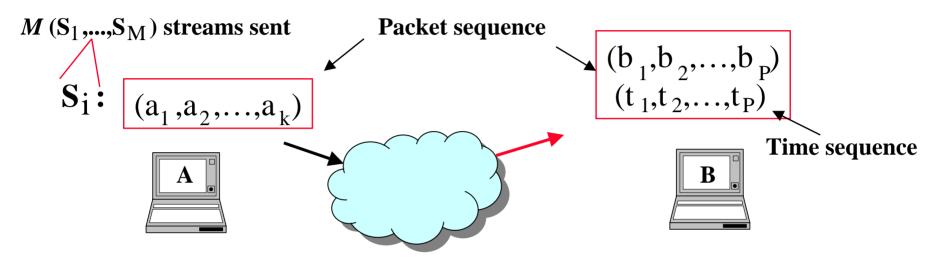
- Introduction to Reordering
- Problem description and definitions
- Experiment results
- Conclusion

Introduction

- Existence of packet reordering (out-of-order arrival of packets at the destination)
- Main reason:
 - The Parallelism in Internet components (switches) and links

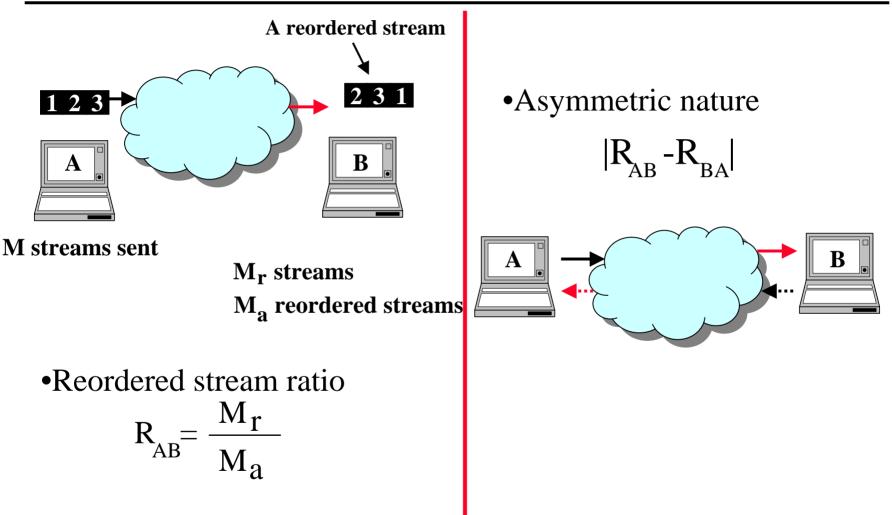
Introduction (con.)

- Amount of reordering is a function of:
 - Network load
 - Configuration of the hardware (i.e., multiple switches in a router) and software (i.e., class-based scheduling or priority queueing) in the routers
- Motivation
 - Reordering greatly impacts the performance of applications in the Internet
 - These reordering measurements may shed light on the underlying properties of the current topology
- Purpose:
 - Understanding the nature of reordering
- UDP 1-way measurement



- Introduction to Reordering
- Problem description and definitions
- Experiment results
- Conclusion

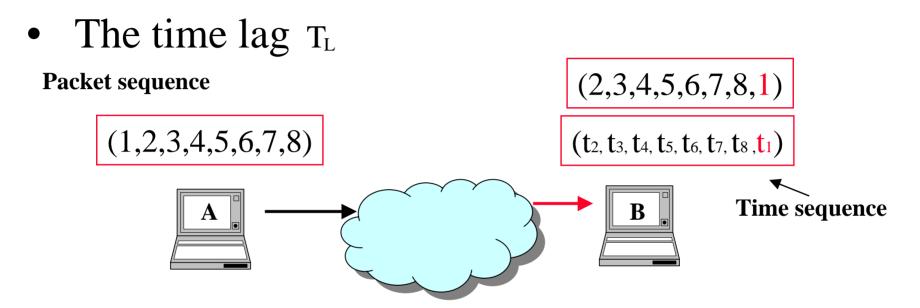
Problem Description and Definitions



• Reordered stream and reordered packet

• Reordered packet lengths L is defined as the total number of reordered packets in an arrival stream

Definitions (con.)


- Question: How to predict whether a reordered packet will be useful in a receiver with a finite buffer?
 - VoIP
 - The reordered packet length does not give sufficient information
- The packet lag P_L

$$(2,1,3,4,5,6,7,8) \qquad (2,3,4,5,6,7,8,1) \\ \bullet P_{L}=1 \qquad P_{L}=7$$

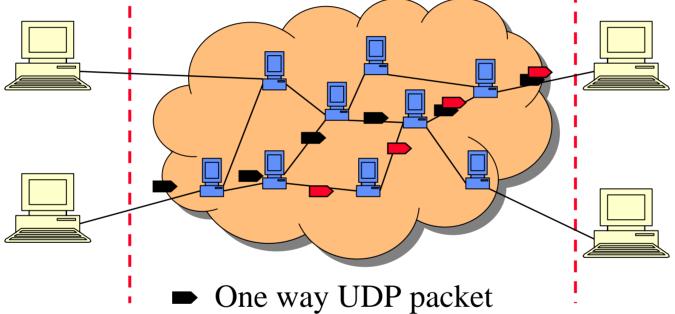
 $P_{\rm L}$ refers to the number of packets, with sequence numbers greater than the reordered packet that are received before the reordered packet itself.

Definition (3)

 T_L is defined as the difference between the delay t_k of the reordered packet k and its expected delay t_k' without reordering

$$T_{L} = |t_{k} - t'_{k}|$$
$$= |t_{k} - \min(t_{1}, \dots, t_{P})|$$

- Research question
 - How to investigate to which extent packets are reordered with respect to a sample of packets?
- Methodology (these functions are measured)
 - Reordered streams ratio
 - The asymmetric nature
 - pdf of reordered packet lengths L
 - The packet lag $P_{\!\rm L}$ and time lag $T_{\!\rm L}$


Overview

- Introduction to Reordering
- Problem description and definitions
- Experiment results
- Conclusion

TUDelft RIPE measurement configuration

Delft University of Technology

• The traces and delay data measured in 12 test-boxes of RIPE TTM project

- A delay accuracy within 10 microseconds
- 12 test-boxes: 3 hosts are located in NL, 2 in GB, 1 in Sweden, Slovakia, Belgium, Australia, USA, Denmark and Greece

- First send 50 100-byte UDP packets (N50)
- Tests were run from 5 to 8 PM on October 16, 2003
- Second send 100 100-byte UDP packets (N100)
- Tests were run from 5 to 8 PM on October 17, 2003
- Why 3 hours?
- The experiment consisted of 104 unidirectional paths
- Reordering does not correlate with loss

TUDelft Results of reordered stream ratio

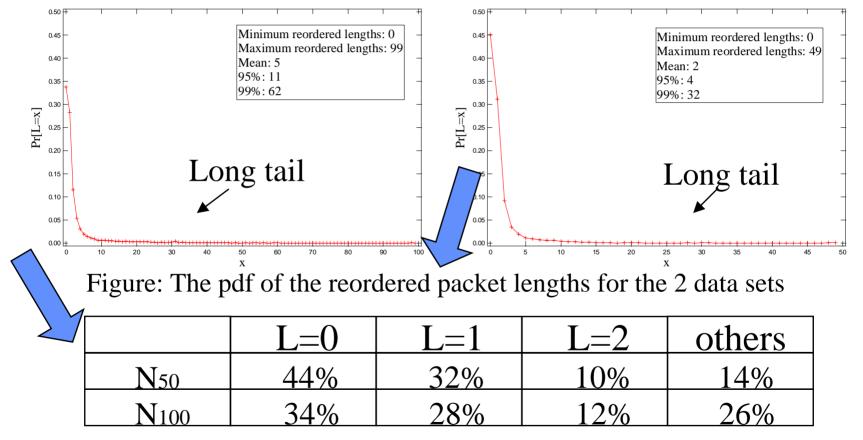
Delft University of Technology

• Aim: Reordered stream ratio gives insight how often reordering happened in the probe-streams

ΝЛ

• Principle :
$$R_{AB} = \frac{M_{r}}{M_{a}}$$

Received data	N50	N100
UDP streams	36762	32691
Reordered stream	20445 (56%)	21649 (60%)
UDP packets	1655120	2828834
Reordered UDP packets	101018 (6%)	158413(5.6%)
Measurement duration	3 hours	3 hours


Table: Details of the packets used to measure the reordering on 104 paths

• Reordering quite often occurs in the probe-streams

TUDelft Results of Reordered packet length L

Delft University of Technology

- Aim: quantify the extent of reordering
- How many reordered packets in each arrival stream?

• Most individual streams have a relatively small number of reordering events

TUDelft Results of Reordered packet length (2)

Delft University of Technology

• Fitting the pdf of *L* on a log-log scale seems to indicate power law behavior for *L*

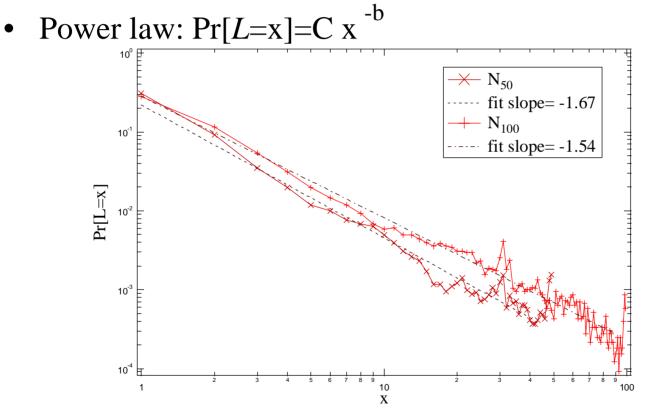


Figure: The pdf of reordered packet lengths *L* and the power law fit

Results of the packet lag $P_{\rm L}$

Delft University of Technology

• The packet lag P_{L}

Aim: Help to predict whether a reordered packet will be useful in a receiver buffer with finite limit

Principle: How many packets with greater sequence numbers have been received before the reordered packet

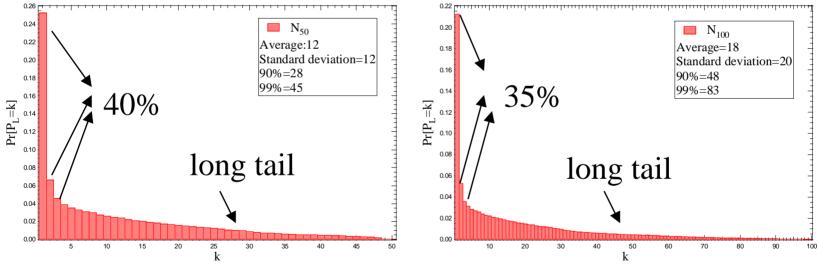


Figure: The pdf of packet lag for 2 data sets

Packet reordering has a significant impact on UDP performance since reordering adds a high cost for recovering from the reordering on the end host

TUDelft Results of the packet lag $P_L(2)$

Delft University of Technology

- Fitting the pdf of $P_{\rm L}$ on a log-lin scale seems to indicate exponential distribution for $P_{\rm L}$
- Exponential distribution: $Pr[P_L = k] = a e^{-ak}$

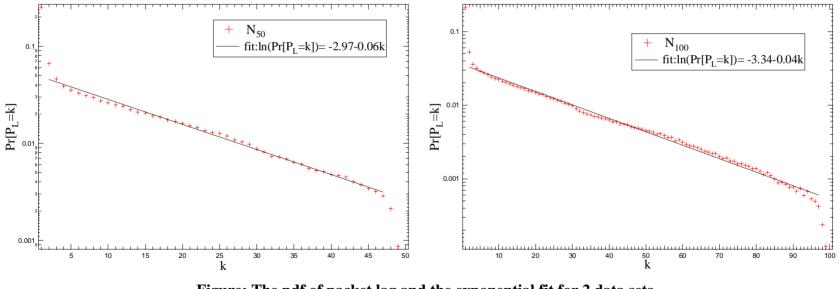
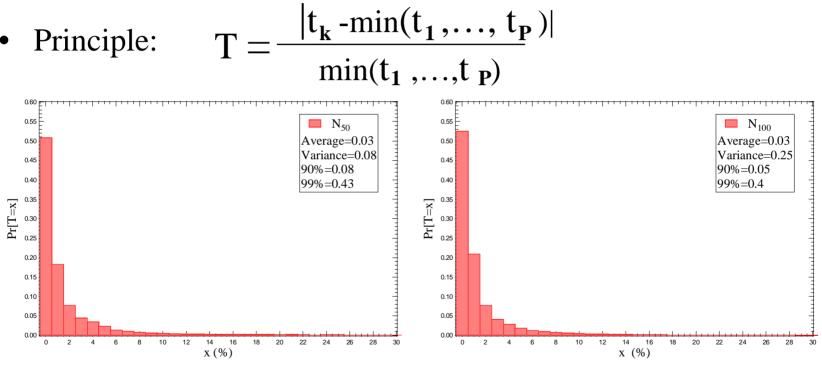


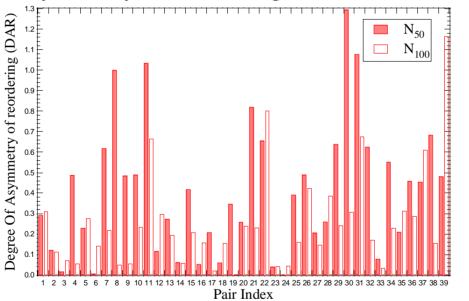
Figure: The pdf of packet lag and the exponential fit for 2 data sets

TUDelft Results of reordered time lag

Delft University of Technology

• Aim: Time lag is a delay-based metric to more precisely evaluate the impact of reordered packets on the end hosts




Figure: The pdf of normalized time lag for 2 data sets

Packet reordering does not have a significant impact on UDP delay since reordering does not add large delay on the end host

TUDelft Results of Asymmetry nature

Delft University of Technology

- Omit pairs for which the probe-streams in one of the direction were missing, leaving the data from in total 39 pairs $|\mathbf{R}_{+}\mathbf{R}_{-}\mathbf{R}$
- Degree of asymmetry of reordering (DAR): DAR=

 $\frac{|\mathbf{R}_{AB} - \mathbf{R}_{BA}|}{\min(\mathbf{R}_{AB}, \mathbf{R}_{BA})}$

Figure: Degree of Asymmetry of Reordered streams in all 39 symmetric traces

The asymmetry of reordered streams ratios exists on all experiment pairs, but it varies greatly from testbox-to-testbox

• Routing policies

Faculty of Electrical Engineering, mathematics and computer science

Conclusion

- Reordering is a frequent phenomenon in Internet
- Most individual streams have a relatively small number of reordering events
- Packet reordering has a significant impact on UDP performance but it does not add a large delay on the end hosts
- The asymmetry of reordered streams ratios exists on all experiment pairs, but it varies greatly from testbox-to-testbox